
Semaphore Security Audit
By Kyle Charbonnet, Security Engineer @ EF’s Privacy & Scaling Explorations Team

May, 2022



Table of Contents

1. Overview
a. Executive Summary
b. Background
c. Coverage
d. Techniques Used

i. Static Analysis
ii. Fuzzing Campaign
iii. Weak Verification

e. General Analysis
2. Findings

a. Major
i. Finding 1 - [M1]
ii. Finding 2 - [M2]

b. Warnings
i. Finding 3 - [W1]
ii. Finding 4 - [W2]
iii. Finding 5 - [W3]

c. Fix Log
d. Vulnerability Classifications



Overview

Executive Summary
The Semaphore code base was audited with a focus on both the smart contracts and the
Circom circuits. The contracts followed solidity best practices with great documentation and
NatSpec comments. Two major bugs were found, one for a Semaphore contract and another for
an important dependency contract. Both of these have been fixed. There were no identified
issues or concerns with the Circom circuits. Overall, the Semaphore codebase is simple, well
written, and, in my opinion, ready for production.

Background
Semaphore is a zero-knowledge protocol that acts as a generic privacy layer for Ethereum
dApps. It allows users to prove they are members of a group without revealing their identity.
They are also able to endorse an arbitrary string when they prove their membership. This
functionality enables a wide range of use cases, from private voting to whistleblowing.

The two main components of Semaphore are the smart contracts and the Circom circuits. The
smart contracts allow users to interact with the protocol on-chain. The circuits are used to
generate zero-knowledge proofs that a user is part of a group without revealing their identity.
The proof can then be verified through a Verifier smart contract on-chain.

Semaphore implements the protocol logic in SemaphoreCore.sol, SemaphoreGroups.sol, and
Semaphore.sol. These contracts are meant to be extended by more detailed protocol contracts
that need the Semaphore utility. For example, the Semaphore codebase also provides a private
voting contract and a whistleblowing contract. These are just two examples of the applications
that can be built on Semaphore.

Coverage
Github Repo: https://github.com/semaphore-protocol/semaphore
Commit Hash: 339d3ac7da9dd22eeda46f418d7c48976724b1ca
Documentation: https://semaphore.appliedzkp.org/

All contracts in semaphore/contracts and all circuits in semaphore/circuits were reviewed. The
following were focused on during the review of the smart contracts (but not limited to):

● Proper access control for handling group settings and membership
● Identity revealing information kept off-chain and private when proving membership
● Inability to successfully cast a vote or whistleblow when a proof is invalid
● Nullifier hashes were properly set when required
● Values were within range of the snark field when required
● Malicious members cannot compromise the privacy of others or halt the protocol

https://github.com/semaphore-protocol/semaphore
https://semaphore.appliedzkp.org/


The following were focused on during the review of the circuits:
● The identity nullifier, identity trapdoor, merkle tree indices, and merkle tree siblings are

private inputs
● The circuit cannot be rendered broken by invalid public inputs
● All variables are uniquely determined - there are no missing constraints
● All component inputs are restricted to their expected format

Techniques Used
The following techniques were used for this audit - Static Analysis via Slither, Fuzzing Campaign
via Echidna, Weak Verification via Ecne, and manual review. Manual review played the largest
role in reviewing this codebase, but the other tools help rule out a wide range of potential bugs.

Static Analysis - Slither
Slither is a tool provided by TrailOfBits. It was used on all of the smart contracts. There were
many low level findings that were reviewed but determined not to be an issue. There were also
2 medium findings and 0 high findings.

Finding Priority Action Needed

SemaphoreVoting.createPoll(uint256,address,uint8).poll
(contracts/extensions/SemaphoreVoting.sol#51) is a
local variable never initialized

Medium No - default values
are correctly assumed

Verifier.verifyProof(uint256[2][2],
uint256[2],uint256[4]).proof (all verifiers in
contracts/verifiers/) is a local variable never initialized

Medium No - all 3 components
are written to in the
following 3 lines

Fuzzing Campaign - Echidna
Echidna is a tool provided by TrailOfBits. It was used to fuzz the SemaphoreGroups.sol
properties. The results give more confidence that Semaphore groups respond properly to their
state changing functions.

Property Result

A group’s zero value cannot be changed once set Passed

A group’s depth value cannot be changed once set Passed

A group’s root always changes after addMember is called with any leaf but the
0 leaf

Passed



A group’s ‘number of leaves’ value always increases by 1 after addMember is
called

Passed

A group’s root always changes after removeMember is called Passed

A group’s ‘number of leaves’ value never changes Passed

Weak Verification of Circuits - Ecne
Ecne, a new tool from 0xPARC used for weakly verifying Circom circuits, was used on all
circuits in Semaphore. The tool found that all variables in the circuits are uniquely determined,
and therefore the circuits are weakly verified. This gives confidence that given a set of inputs,
there is only one unique output to the circuit. Therefore, an attacker cannot use a given set of
inputs to generate two different proofs with different outputs. More info on weak verification and
Ecne can be found here: https://0xparc.org/blog/ecne

Ecne Findings

Uniquely Determined Variables 25416

Total Variables 25416

Sound Constraints True

General Analysis

Category Evaluation

Access Control Strong. Access is limited as intended, mainly to group admins.

Launch Risk Strong. Semaphore does not manage assets. Additionally many
dApps built on Semaphore will deploy their own Semaphore
contract. They should consider launch controls if necessary.

Code Quality Strong. Code follows best practices for solidity and circom. No
unnecessary use of assembly. No confusing variable/function
names. Good use of interfaces and inheritance.

Decentralization Weak. Group admins have full control over adding/removing
members and casting votes. They can censor any vote in the
case of SemaphoreVoting.

Events Strong. Events are emitted after every important function call
such as casting votes and adding members. Relevant details are
emitted.



Dummy Proof Moderate. Contract function names are clear in their intent and
hard to misuse. However, some 0 address checks are missing.

Complexity Strong. Short and simple contracts and circuits.

Testing Moderate. Strong and well written unit tests. However the circuits
are not well tested. This is due to a lack of Circom testing tools at
the moment.

Documentation Strong. NatSpec comments for all functions and good
documentation on the website.

Cryptography Not Thoroughly Reviewed

ZK Circuits Strong. Circuits are simple and weakly verified.

Findings

Major

[M1] Missing ZK snark scalar field check on 0 leaf in dependency
Location
https://github.com/privacy-scaling-explorations/zk-kit/blob/cc21bb125fb594772e7e46111fdba058
45a06355/packages/incremental-merkle-tree.sol/contracts/IncrementalBinaryTree.sol#L29

Description
During initialization of the IncrementalBinaryTree.sol, the user can enter any value for the
uint256 zero field. This becomes an issue if the user uses a value greater than the
SNARK_SCALAR_FIELD. A zero leaf can be inside an array of proofSiblings when proving
existence of a leaf which may cause an issue when the IncrementalBinaryTree.verify function is
called during the IncrementalBinaryTree.remove function. The verify function requires that all
proofSiblings are less than the SNARK_SCALAR_FIELD. So, if the 'zero' leaf is greater than the
SNARK_SCALAR_FIELD, this verify function will unintentionally fail.

Suggested Solution
Add a require(zero < SNARK_SCALAR_FIELD, "...") statement in the
IncrementalBinaryTree.init() function.

[M2] Missing checks to ensure zk proof inputs are less than
SNARK_SCALAR_FIELD
Location



https://github.com/semaphore-protocol/semaphore/blob/5186a940ff495ff163bd5779631a716d0b
f96507/contracts/base/SemaphoreGroups.sol#L27

Description
The SemaphoreGroup.sol contract uses the "groupId" as the external nullifier. Therefore, the
groupId will be provided as a public input when calling Verifier.verifyProof. When a user creates
a new poll via SemaphoreVoting.createPoll, the user can enter any uint256 value as the poll id,
which will then be the group Id. The issue arises when the user inputs a value for pollId that is
greater than the SNARK_SCALAR_FIELD constant. Then, the call to verify any proofs for this
poll will fail because the Verifier checks that input[i] < snark_scalar_field for each public input.
Since both the SemaphoreVoting.sol and SemaphoreWhistleblowing.sol contracts use the
groupId as external nullifiers, this issue is present in both.

Suggested Solution
Add a constraint in the SemaphoreGroup.sol contract to check that the groupId is less than the
SNARK_SCALAR_FIELD. This will protect any extensions that use the group id as an external
nullifier.

Warnings

[W1] Root history can be overridden by a different group
Location
https://github.com/semaphore-protocol/semaphore/blob/fd3cc6f7db46aec83c0f807a8155dcd66
561a0db/contracts/base/SemaphoreGroups.sol#L21

Description
The root history field variable in the SemaphoreGroups.sol contract is meant to store a mapping
of every root to its corresponding group id. Since it is possible that the same users (with the
same identity commitments) are added as members in the same order, the root history for the
first group will be overridden. Instead all of those roots will map to the new group. This can be
an issue for any applications that assume the root history for a group is unique and never
overridden.

Suggested Solution
Allow dApps to implement this feature themselves if needed and remove from contract.

[W2] Users must trust the verification key stored in the Verifier
contracts
Location
N/A

Description

https://github.com/semaphore-protocol/semaphore/blob/fd3cc6f7db46aec83c0f807a8155dcd66561a0db/contracts/base/SemaphoreGroups.sol#L21
https://github.com/semaphore-protocol/semaphore/blob/fd3cc6f7db46aec83c0f807a8155dcd66561a0db/contracts/base/SemaphoreGroups.sol#L21


The verification key stored in the Verification contract can store a key that is meant for a much
less strict circuit. All it takes is one person to catch the incorrect verification keys, but that
requires good background knowledge on how to do that. Perhaps an easy to use script that
verifies that the verification key stored in the Verifier contracts matches the circuits will help
users to fully trust the application.

Suggested Solution
Add a simple script that any user can quickly run to verify that the verifying keys match the
circuits.

[W3] Missing address 0 check
Location
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0c
e5710125/contracts/Semaphore.sol#L40,
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0c
e5710125/contracts/Semaphore.sol#L54,
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0c
e5710125/contracts/extensions/SemaphoreVoting.sol#L42,
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0c
e5710125/contracts/extensions/SemaphoreWhistleblowing.sol#L44

Description
When creating a group or updating the admin, users can input the 0 address to be the admin.
This will lock the group and render it useless, wasting gas for the user. Inputting the 0 address
can happen when a user doesn’t initialize an address variable and the default value is used.
This is a dummy proof warning.

Suggested Solution
Add zero address checks at the beginning of the listed functions.

Fix Log

Issue Severity Status

[M1] Major Fixed.
https://github.com/privacy-scaling-explorations/zk-kit/issues/23

[M2] Major Fixed.
https://github.com/semaphore-protocol/semaphore/issues/90

[W1] Warning Fixed.
https://github.com/semaphore-protocol/semaphore/commit/c66
67d98b8c72a424afd118da6cbde03a4945690

https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0ce5710125/contracts/Semaphore.sol#L40
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0ce5710125/contracts/Semaphore.sol#L40
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0ce5710125/contracts/Semaphore.sol#L54
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0ce5710125/contracts/Semaphore.sol#L54
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0ce5710125/contracts/extensions/SemaphoreVoting.sol#L42
https://github.com/semaphore-protocol/semaphore/blob/ee7aad1dd72c5b473c0012ca0f9c9d0ce5710125/contracts/extensions/SemaphoreVoting.sol#L42


[W2] Warning Not handled. This is a common issue for a lot of zk projects
and so this issue may be fixed for many projects at once with
a single tool that allows users to quickly verify a verifying key.

[W3] Warning Not handled.

Vulnerability Classifications

Severity Categories

Severity Description

Recommendation Information not relevant to security, but may be helpful for efficiency,
costs, etc.

Warning The issue does not pose an immediate security threat, but may be a lack
of following best practices or more easily lead to the future introductions
of bugs.

Minor The code does not work as intended. Impact to the system and users is
minimal if present at all.

Major The issue can lead to moderate financial, reputation, availability, or
privacy damage. Or the issue can lead to substantial damage under
extreme and unlikely circumstances.

Critical The issue can lead to substantial financial, reputation, availability, or
privacy damage.


