
Community Proposal:

Semaphore: Zero-Knowledge Signaling on

Ethereum

Kobi Gurkan
Ethereum Foundation and C Labs

Koh Wei Jie
Ethereum Foundation

Barry Whitehat
Independent

February 2, 2020

Abstract

Privacy has been a big concern in the blockchain space. While different
specific solutions have been introduced to introduce more privacy into
systems, they remain focused on specific problems and are complex to
extend and deploy.

We introduce Semaphore - a framework for zero-knowledge signaling
on Ethereum. It allows a user to broadcast their support of an arbitrary
string, without revealing who they are to anyone, besides being approved
to do so. Semaphore is meant to be used a base layer for signaling-based
applications - mixers, anonymous DAOs, anonymous journalism, etc.

Semaphore is designed to allow building applications in a modular
fashion. Normally, they would be implemented as a smart contract that
would manage the onboarding of new identities and would define the con-
ditions for signals to be accepted for broadcast, besides passing the checks
of the Semaphore layer. Being deployed on Ethereum, it allows interaction
with other applications residing on the Ethereum blockchain.

We provide an efficient implementation of our framework, in the form
of two example applications - a mixer and an anonymous survey dApp.
Our implementation is built in a way that makes it flexible to extend and
clear to deploy.

Contents

1 Introduction 3

2 Notation 4

1



3 Concepts 4
3.1 Identity keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 External Nullifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Identity Commitment Tree . . . . . . . . . . . . . . . . . . . . . 5
3.5 Nullifier Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.6 Signal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.7 Relayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.8 Relayer Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Abstract Protocol 6
4.1 Hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Pseudo random functions . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.5 Identity commitment tree . . . . . . . . . . . . . . . . . . . . . . 9
4.6 Nullifier map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.7 Signal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.8 Semaphore state . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.9 zkSNARK statement . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.10 Groups, fields and zkSNARK proving system . . . . . . . . . . . 11

5 Concrete Protocol 11
5.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Groups and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.1 MiMC sponge . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.2 Pedersen hash and commitments . . . . . . . . . . . . . . 12

5.4 Nullifiers hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.6 Semaphore state . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 MicroMix - a Mixer 14
6.1 Security claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 OneOfUs - an anonymous survey/voting dApp 14
7.1 Security claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Acknolwedgements 15

2



1 Introduction

Privacy has been a big concern in the blockchain space. Financial privacy
solutions has been introduced in the form of systems based on mixing [9, 21],
systems based on decoys, such as Monero [15], and systems based on zkSNARKs,
such as Zcash [5]. Mixing-based and decoy-based solutions provide a limited
anonymity set per transaction, while solutions based on zkSNARKs provide
an always growing anonymity set. Even though, zkSNARKs-based financial
privacy has been mainly possible up until 2019 in the Zcash blockchain, which
is its own separate blockchain, making interoperability with other applications
complex and error-prone.

Financial privacy is not the only kind of privacy desired in the blockchain space.
Other areas of interest include anonymous authentication, where members of a
group can login to a service without revealing which member of the group they
are and in the process hide their transaction history, and anonymous DAOs
(Decentralized Autonomous Organizations), where users can anonymously take
actions (e.g., vote) without having their individual actions linked to each other.

Since the introduction of EIP 196 [11] and EIP 197 [12], the costs for verifying
zkSNARK proofs on Ethereum have been practical, and even more so after EIP
1108 [10]. This opens the door to deploy zkSNARK-based privacy solutions in
a way that interacts with other deployed applications on the same blockchain,
where in Ethereum’s case are general-purpose smart contracts.

We introduce Semaphore, a zero-knowledge signaling framework highly inspired
by Zcash, providing a method for users who are part of a group to broadcast
an arbitrary string without exposing their identity. Semaphore is designed as a
base layer that can be used to build different applications, which we motivate in
this document. During the design of Semaphore, we choose cryptographic prim-
itives that strongly protect the users long-term anonymity, while for efficiency
we use newer primitives that are now receiving more attention [14]. Moreover,
Semaphore is designed to support external authorization, such as hardware wal-
lets, to allow safer signaling, by the user of signatures inside the circuit.

Semaphore is designed to be efficient to run both in a browser, on mobile and on
Ethereum’s EVM, giving rise to a system that is practical for every-day uses. We
provide an implementation of both the zkSNARKs and contracts of Semaphore
an an example application, MicroMix, which is built on top of Semaphore.

We note that Semaphore can be seen as built from gadgets that have been
discussed in [22], as its components are membership proofs, commitments, sig-
nature verification and a PRF. The gadgets listed in [22] can replace these parts
in Semaphore, depending on the desired efficiency and security parameters.

In summary, Semaphore is a generic zero-knowledge signaling protocol, with a
concrete efficient and reasonbly secure instantiation on Ethereum, coupled with
an easy-to-use and easy-to-extend implementation.

3



2 Notation

b means the type of bit values, i.e. {0, 1}. B means the type of byte values, i.e.
{0..255}.

b[`] means the set of sequences of ` bits, and B[k] means the set of sequences of
k bytes.

lMerkleDepth, lMerkleNode, lPosition, lExternalNullifier, lNullifierS, lBabyJubjubCapacity, lBabyJubjubBits,
lBNCapacity, lBNBits, lBabyJubjubCofactor, lEthereumAddress are constants that will be in-
stantiated in the concrete protocol description.

pad32 means padding a byte sequence with bytes of value 0 to the left, until
reaching a 32-byte array.

BN254,BabyJubjub,Fq,Fr,Fs,J are defined in section 5.2.

NumToBitsx converts a number to its little-endian bit representation. NumToBitsStrict
does the same, with verification that the bit representation is the one that gen-
erates the number with value under Fs, preventing aliasing.

uint256 is a 32-byte integer.

MedDSA is defined in 4.4 and instantiated in 5.5.

Projectx means taking the x coordinate of an elliptic curve point.

3 Concepts

3.1 Identity keys

Identities in Semaphore must generate an MedDSA private key idkey, which will
be used to authenticate their signals to the system.

3.2 Identities

identities Users registering to the system possess an identity they must keep
secret. A commitment to this structure is known to the public.

An identity is a tuple (idpub, idnullifier, idtrapdoor), where:

• idpub : MedDSA.Public is the public key corresponding to the identity’s
private key idkey.

• idnullifier : B[31] is a random sequence of bytes.

• idtrapdoor : B[31] is a random commitment trapdoor .

4



An identity is generated locally by a user registering to Semaphore, where idkey

and idnullifier are sampled randomly. Both idpub and idnullifier are not revealed
publicly, and are used by the zero-knowledge proof to check the identity com-
mitment exists in the identity commitment tree and the nullifier map is checked
so that the nullifiers hash corresponding to the identity nullifier was not used
to broadcast a signal for the same external nullifier .

An identity commitment on an identity id = (idpub, idnullifier, idtrapdoor) is com-
puted as

Commitment(id) = Commitidtrapdoor
(idpub, idnullifier)

where Commit is a Pedersen hash instantiated in 5.3.2.

3.3 External Nullifier

The external nullifier is combined with the identity nullifier to form an opaque
nonce value, which uniquely identifies a signal from an identity for a specific
external nullifier .

3.4 Identity Commitment Tree

Users normally register identities by broadcasting a transaction containing an
identity commitment to the application smart contract, where custom valida-
tion rules are checked, depending on the use-case - see 6 for an example. The
Semaphore smart contract then adds the identity to the identity commitment
tree.

Specifically, the smart contract maintains a log(n) amount of tree nodes, in-
cluding the tree root, allowing to efficiently insert new tree leaves. Additionally,
the smart contract stores all the leaves, so users could rebuild the tree locally
when wishing to find the path from their leaf to the root, required by the
zero-knowledge proof.

The identity commitment tree is stored in the state.

3.5 Nullifier Map

The nullifier map is a hash map maintained by Semaphore, which prevents
double signaling by the same identity with the same external nullifier . Each
time a signal is broadcast, it includes a nullifiers hash derived from the identity
commitment position in the tree, the identity nullifier and the external nullifier .
This nullifiers hash is checked for existence in the hash map, preventing multiple
signals by the same identity for the same external nullifier .

The nullifier map is stored in the state.

5



3.6 Signal map

The signal map is a hash map maintained by Semaphore, which stores all the
signals successfully broadcast by users. This serves as a source for users to read
historic signals.

The signal map is stored in the state.

3.7 Relayer

Ethereum transactions are tied to a specific address, and transactions sent from
this address consume Ether to pay for gas. When a signal is broadcast, the
Ethereum address used for the transaction might be used to break the anonymity
of the broadcaster. Semaphore allows signals to be received from any address,
allowing a relayer to broadcast a signal on behalf of a user. Applications might
provide rewards for relayers and implement front-running prevention mecha-
nisms, such as requiring the signals to include the relayer’s address, binding the
signal to that specific address.

3.8 Relayer Registry

We decentralise transaction abstraction via a burn relay registry.

A relayer does the following:

1. Receives transactions via an off-chain API

2. Simulates said transactions to see if their balance increases if executed (this
implies that the target contract will transfer ETH or tokens to msg.sender)

3. Execute the transaction and burn a fraction of the fee earned.

4. The fee is both a reputation and anti-spam mechanism

There is a relayer registry contract which keeps track of relayers’ ETH addresses,
the number of transactions relayed, and the total amount of ETH burned.

4 Abstract Protocol

4.1 Hash functions

MerkleCRH : Fr×Fr → Fr is the hash function used in the Merkle tree.

Security requirements: MerkleCRH must be collision-resistant.

6



Design rationale: MerkleCRH’s collision-resistance ensure that the Merkle
root generated from a leaf set is unique, and that it is infeasible to find a leaf
that is not in the set and can be proven to be included in it.

4.2 Pseudo random functions

NullifiersPRFx(y, z) : B[lNullifierS]×B[lExternalNullifier]×B[lPosition] → b[lBabyJubjubCapacity] is
used to derive a unique byte-string out of the identity’s position in the tree, the
identity nullifier and the external nullifier . The first argument is the key.

Security requirements:

1. Security definitions for Pseudo Random Functions are given in [4].

2. In addition to being Pseudo Random Functions, it is required that NullifiersPRF
is collision-resistant across all x — i.e. finding (x, y, z) 6= (x′, y′, z′) such
that NullifiersPRFx(y, z) = NullifiersPRFx′(y′, z′) should not be feasible.

Design rationale: NullifiersPRF is meant to preserve the anonymity of the
broadcaster by preventing linkability between multiple signals from the same
broadcaster. Being a conservative bit-twiddling hash, it aims to provide security
against adversaries wishing to deanonymize past signals, which may include
quantum adversaries.

4.3 Commitments

Commit : B[31]×J(r)×B[31] → Fr is the commitment scheme used for commit-
ting to identities.

Security requirements:

1. Computationally binding - It is infeasible to find idpub, idnullifier, idpub
′, idnullifier

′

and idtrapdoor, idtrapdoor
′ such that Commitidtrapdoor

(idpub, idnullifier) = Commitidtrapdoor
′

(idpub
′, idnullifier

′).

2. Perfect hiding - for all idpub, idnullifier, idpub
′, idnullifier

′, the distributions {Commitidtrapdoor
(x)

| idtrapdoor
$←− Commit.GenTrapdoor()} and {Commitidtrapdoor

(x′) | idtrapdoor
$←−

Commit.GenTrapdoor()} are equal.

Design rationale: Commit generates commitments that are publicly transmit-
ted. It’s important to provide a reasonable hiding property, since some of the
elements inside the commitments could possibly be used to either deanonymize
the identity when broadcasting or generate unauthorized signals, if faced against
a quantum adversary. It’s also important that the scheme is binding, since you
shouldn’t be able to either use another nullifier or public key, allowing multiple
signals for the same external nullifier.

7



4.4 Signatures

Semaphore uses MedDSA for authorizing signals, a signature scheme almost
identical to EdDSA, with the difference that the hash function used for hashing
the private key and the hash function used for hashing (R,A,M) are different.

MedDSA provides:

• a type of signing keys MedDSA.Private.

• a type of verifying keys MedDSA.Public.

• a type of messages MedDSA.Message.

• a type of signatures MedDSA.Signature.

• a randomized signing key generation algorithm MedDSA.GenPrivateKey :

()
$−→ MedDSA.Private.

• an injective verifying key derivation algorithm MedDSA.DerivePublic :
MedDSA.Private→ MedDSA.Public.

• a hash function Hkey : MedDSA.Private→ B[2∗lBabyJubjubBits].

• a hash function Hmessage : F4
r×MedDSA.Message→ Fs.

• a randomized signing algorithm MedDSA.SignHkey,Hmessage
: MedDSA.Private×

MedDSA.Message
$−→ MedDSA.Signature

• a verifying algorithm MedDSA.VerifyHkey,Hmessage
: MedDSA.Public×

MedDSA.Message×MedDSA.Signature→ b

For a message M and a private key sk
$←− MedDSA.GenPrivateKey(), MedDSA

must satisfy sig ← MedDSA.Sign(sk,M),MedDSA.Verify(MedDSA.DerivePublic(sk),M, sig) =
1.

Security requirements:

1. MedDSA must be Strongly Unforgeable under (non-adaptive) Chosen Mes-
sage Attack (SU-CMA), as defined for example in [6]. This allows an ad-
versary to obtain signatures on chosen messages, and then requires it to
be infeasible for the adversary to forge a previously unseen valid (message,
signature) pair without access to the signing key.

2. Hkey is modeled as a random oracle.

3. Hmessage must be long enough to prevent grinding attacks.

Design rationale: We’ve chosen to use a signature scheme here to allow the
separation of authorization and anonymity, allowing for better security for au-
thorization. The signature may be more easily generated on a hardware device,
such that an attacker that can interfere with the zkSNARK proving process,
still can’t generate the appropriate signature to complete it.

8



4.5 Identity commitment tree

The tree state is an incremental Merkle tree, which maintains a state of size
log(n) called TreeState.Subtrees : Fr[lMerkleDepth + 1] and allows efficient inser-
tions. It provides the following API:

1. TreeState.AddCommitment : Fr → () - adds a commitment to the right,
replacing the next empty leaf. When a subtree of level i is filled, the
element TreeState.Subtrees[i] is replaced with the root of the subtree.

2. TreeState.GetLeaves : () → Fr[2lMerkleDepth ] - returns all the leaves stored in
the tree.

Users wishing to broadcast signal must first obtain the path from the leaf of
their identity commitment to a root of the identity commitment tree, either the
current or an historic one. It’s better using a recent one to prevent leaking the
fact you belong to a historic and smaller anonymity set. These paths can be
obtained by either:

1. Building the tree locally using the leaves at the time of signal broadcast.

2. Asking the path from a service that maintains the whole tree, at the cost
of the service finding out which leaf belongs to the user.

3. Continuously maintaining a path, and incrementally updating it when
leaves are added to the tree. These method is described in [5].

4.6 Nullifier map

The nullifier map is a hash map containing the nullifiers hash-es from each
broadcast. This prevents multiple broadcasts of multiple signals from the same
identity and the same external nullifier . It provides the following API:

1. NullifierMap.AddNullifiersHash : B[31] → () - adds a nullifiers hash to the
hash map.

2. NullifierMap.CheckNullifiersHash : B[31] → b - checks if a nullifiers hash
exists in the hash map.

4.7 Signal map

The signal map is a hash map containing the signals, byte strings of arbitrary
length, that users have broadcast successfully. The signals are indexed by a
uint256 index. It provides the following API:

1. SignalMap.AddSignal : B[] → () - stores a signal in the map.

2. SignalMap.GetSignalByIndex : uint256 → B[] - retrieves a signal by an
index.

9



4.8 Semaphore state

Semaphore’s state is comprised of the identity commitment tree, the nullifier
map, the signal map and a few other public state variables:

1. TreeState.Owner : B[lEthereumAddress] is the owner of the state who has permis-
sions to perform some actions other actors cannot. It can be changed by
TreeState.SetOwner, allowed only to be called by TreeState.Owner.

2. TreeState.IdentityCommitmentTree is an instance of TreeState, where addi-
tion is only allowed to be performed the owner of the state.

3. TreeState.NullifierMap is an instance of NullifierMap, where insertion is only
allowed after a successful signal broadcast.

4. TreeState.SignalMap is an instance of SignalMap, where insertion is only
allowed after a successful signal broadcast.

5. TreeState.ExternalNullifier : B[lExternalNullifier] is the current external nullifier ,
and can be changed by the owner using TreeState.SetExternalNullifier :
B[lExternalNullifier] → ().

6. TreeState.IsPermissioned : b determines whether signals can be broadcast
by anyone or just the owner. The latter situation fits the common case
where Semaphore is used as a base layer, and the application defines more
complex validation checks before passing it on to Semaphore. It can be
changed by the owner using TreeState.SetIsPermissioned : b→ ().

4.9 zkSNARK statement

Given public inputs:

• signal hash : Fr

• external nullifier : B[lExternalNullifier]

• root : Fr

• nullifiers hash : b[lBabyJubjubCapacity]

and private inputs:

• id = (idpub, idnullifier, idtrapdoor)

• idcomm : Commit.Output

• id path : Fr[lMerkleDepth]

• id path index : b[lMerkleDepth]

• signature : MedDSA.Signature

the following conditions hold:

10



• Identity commitment integrity idcomm = Commitidtrapdoor
(idpub, idnullifier).

• Merkle path validity (id path, id path index) is a valid Merkle path from
idcomm to root.

• Nullifiers hash integrity nullifiers hash =
NullifiersPRFidnullifier

(external nullifier, id path index)

• Signal authorization MedDSA.Verify(idpub,
(external nullifier, signal hash), signature) = 1

4.10 Groups, fields and zkSNARK proving system

We directly use the description of group operations, fields and zkSNARK prov-
ing system as described in [5], where we use the Groth16 proving system with
the BN254 curve.

5 Concrete Protocol

5.1 Constants

Let:

• lMerkleDepth := 20

• lBabyJubjubBits := 251

• lBabyJubjubCapacity := lBabyJubjubBits − 1

• lBNBits := 254

• lBNCapacity := lBNBits − 1

• lMerkleNode := lBNBits

• lEthereumAddress := 20

• lBabyJubjubCofactor := 8

• lExternalNullifier := 29

• lNullifierS := 31

• lPosition := 4

lBabyJubjubCapacity and lBNCapacity are the lenghts of arbitrary bit strings that can
be stored and safely be converted to a number in Fr without aliasing.

11



5.2 Groups and fields

We use the BN254 curve, whose equation is y2 = x3 + 3 over the finite field Fq,
where q := 21888242871839275222246405745257275088696311157297823662689037894645226208583.
Its scalar field is denoted Fr, where r := 218882428718392752222464057452572
75088548364400416034343698204186575808495617.

Inside it, we use the embedded curve BabyJubjub, denoted J, whose equation
is 168700x2 + y2 = 1 + 168696x2y2 over the finite field Fr. Its scalar field is
denoted Fs.

5.3 Hash functions

5.3.1 MiMC sponge

We use the MiMC− Feistel permutation described in [1] instantiated over F2
r

with 220 rounds and 5 as the exponent, denoted P . We then define MiMCSponge(m,n)
as a sponge construction with capacity = 1, rate = 1, m is the amount of in-
put field elements and n is the amount of output field elements. ⊕ operations
have been replaced with field additions.

We use MiMCSponge(2, 1) for the Merkle tree and hashing the message passing
it to MedDSA.Verify and MiMCSponge(5, 1) in the MedDSA verifier itself.

We use the round constants generated by first hashing the string ”mimcsponge”
using Keccak256, and then repeatedly hashing this result using Keccak256, start-
ing from index 1. The first and last round constants are 0, as recommended by
the paper.

5.3.2 Pedersen hash and commitments

We use a Pedersen hash defined over the BabyJubjub curve, as introduced in [5].
It works by dividing an input message M = {Mi : b}Ni=0 into segments and then
computing over individual 4-bit windows:

PedersenHash(M) =

S−1∑
s=0

W−1∑
w=0

(−1)M4w+3 · 25w(M4w + 2M4w+1 + 4M4w+2)gs

where W = 50 and S = N−1
200 + 1 <= 10. For each s, the generator gs is

computed as the first successful attempt, when incrementally trying indices
from i = 0, finding a BabyJubjub point from a possible x coordinate calculated
as Blake256(”PedersenGenerator”||pad32(s)||pad32(i)), with the 255th bit set
to 0. Blake256 is described in [3].

We define M := pad32(NumToBitsStrict(Projectx(lBabyJubjubCofactor · idpub))) ||
pad32(idnullifier) || pad32(idtrapdoor) and instantiate Commitidtrapdoor

(idpub, idnullifier)

12



by the x coordinate of PedersenHash(M), where idtrapdoor : B[31] is a random
sequence of bytes.

The reason we use lBabyJubjubCofactor · idpub is that in signature verification we
multiply by the cofactor anyway, and this allows us to uniquely identify this set
of keys that pass verification by their x coordinate.

5.4 Nullifiers hash

NullifiersPRFx(y, z) is defined as Blake2s(x || y || z), where || means bitwise
concatenation. Blake2s is described in [2].

5.5 Signatures

We instantiate:

• MedDSA.Public := J.

• MedDSA.Private := B[32].

• MedDSA.Message := Fr.

• MedDSA.Signature := (J,Fs).

We also instantiate Hkey := Blake512 and Hmessage := MiMCSponge(5, 1), where
points are unpacked to their respective coordinates. Blake512 is described in [3].

5.6 Semaphore state

The Semaphore state is implemented as a smart contract on Ethereum, as can
be seen in the implementation.

5.7 Implementation

Semaphore’s contracts, circuits and client-side code are available on [18]. The
implementation uses Circom [7] and CircomLib [8] for the circuits, Solidity for
the smart contracts and its prover and verifiers are built using SnarkJS [19] and
WebSnark [20].

Proofs can be created in about 15 seconds on an average browser, both on
PC and mobile. Verification of proofs is done as part of the smart contract
evaluation.

13



6 MicroMix - a Mixer

6.1 Security claims

Assuming the trusted setup was done correctly according the to code supplied:

1. Money cannot be created or destroyed.

2. Only someone who knows the private key can withdraw a leaf.

3. No double spends.

6.2 Application layer

MicroMix is built as an application on top of Semaphore. It supports mixing
either ETH or ERC20. MicroMix adds important characteristics that make
Semaphore suitable for a mixer use-case:

1. Identity registration happens on a deposit of a constant 0.1 ETH amount.

2. The external nullifier is constant and is the mixer’s contract’s address.
In a mixer use-case, there shouldn’t be multiple signals from the same
identity, as every deposit should correspond to a single withdrawal.

3. The signal format is fixed to Keccak256(addr, relayer, fee), binding the
withdrawal to a specific Ethereum address addr, to a specific relayer ad-
dress relayer and a fee to be paid to the relayer fee.

4. Semaphore broadcasts are premissioned, allowing the mixer contract to
verify the necessary condition and pass them on to Semaphore.

6.3 Implementation

MicroMix’s contracts, circuits and client-side code are available on [13].

7 OneOfUs - an anonymous survey/voting dApp

OneOfUs is an anonymous survey application, built on top of a sybil-resistance
token issuance protocol, Proof of Attendence Protocol [17]. Each attendee at
a conference receives a non-fungible Proof of Attendance Token (POAP). We
assume that only attendees own POAP tokens associated with this event.

Attendees can register themselves to the contract as long as they own a specific
event’s POAP token. When they wish to respond to a question, they can use
OneOfUs to generate a proof of their initial registration. This proof does not
reveal their identity, but only their membership in the set of registered identities.

14



7.1 Security claims

Assuming the trusted setup was done correctly according the to code supplied:

1. Only users with a POAP token of a specific event can post questions.

2. Only someone who know the private key can answer a question.

3. No user can answer the same question twice.

7.2 Application layer

OneOfUs is built as an application on top of Semaphore. OneOfUs utilizes
Semaphore’s concepts as follows:

1. Identity registration happens on proving ownership of a POAP token.

2. The external nullifier is a hash of a question.

3. The signals are the answers to the questions.

7.3 Implementation

OneOfUs’s contracts, circuits and client-side code are available on [16].

8 Acknolwedgements

We thank the Ethereum Foundation for supporting our work.

We thank the Electric Coin Company for their pioneering work and excellent
technical specification, which we learned a lot from.

We thank Jordi Baylina and iden3 for their excellent zkSNARKs tools which
Semaphore and MicroMix are using.

We thank Harry Roberts for many fruitful discussions.

We thank the Semaphore Society community for sharing ideas and mutual col-
laboration.

References

[1] Martin Albrecht et al. “MiMC: Efficient encryption and cryptographic
hashing with minimal multiplicative complexity”. In: International Con-
ference on the Theory and Application of Cryptology and Information Se-
curity. Springer. 2016, pp. 191–219.

15



[2] Jean-Philippe Aumasson et al. “BLAKE2: simpler, smaller, fast as MD5”.
In: International Conference on Applied Cryptography and Network Secu-
rity. Springer. 2013, pp. 119–135.

[3] Jean-Philippe Aumasson et al. “Sha-3 proposal blake”. In: Submission to
NIST 92 (2008).

[4] Mihir Bellare et al. “A concrete security treatment of symmetric encryp-
tion”. In: Proceedings 38th Annual Symposium on Foundations of Com-
puter Science. IEEE. 1997, pp. 394–403.

[5] S. Bowe et al. Zcash Protocol Specication. 2019.
[6] Johannes Buchmann et al. “On the security of the Winternitz one-time

signature scheme”. In: International Journal of Applied Cryptography 3.1
(2013), pp. 84–96.

[7] Circom. https://github.com/iden3/circom.
[8] CircomLib. https://github.com/iden3/circomlib.
[9] CoinJoin. https://en.bitcoin.it/wiki/CoinJoin.

[10] EIP 1108. https://github.com/ethereum/EIPs/blob/master/EIPS/
eip-1108.md.

[11] EIP 196. https://github.com/ethereum/EIPs/blob/master/EIPS/
eip-196.md.

[12] EIP 197. https://github.com/ethereum/EIPs/blob/master/EIPS/
eip-197.md.

[13] MicroMix. https://github.com/weijiekoh/mixer.
[14] MiMC Hash Challenge. http://mimchash.org/.
[15] Monero. https://www.getmonero.org/.
[16] OneOfUs. https://github.com/weijiekoh/oneofus.
[17] Proof of Attendence Protocol. http://poap.xyz/.
[18] Semaphore. https://github.com/kobigurk/semaphore.
[19] SnarkJS. https://github.com/iden3/snarkjs.
[20] WebSnark. https://github.com/iden3/websnark.
[21] ZeroLink. https://github.com/nopara73/ZeroLink/.
[22] ZKProof. ZKProof Community Reference. Version 0.2. Dec. 2019. Up-

dated versions at https://zkproof.org.

16

https://github.com/iden3/circom
https://github.com/iden3/circomlib
https://en.bitcoin.it/wiki/CoinJoin
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://github.com/weijiekoh/mixer
http://mimchash.org/
https://www.getmonero.org/
https://github.com/weijiekoh/oneofus
http://poap.xyz/
https://github.com/kobigurk/semaphore
https://github.com/iden3/snarkjs
https://github.com/iden3/websnark
https://github.com/nopara73/ZeroLink/

	Introduction
	Notation
	Concepts
	Identity keys
	Identities
	External Nullifier
	Identity Commitment Tree
	Nullifier Map
	Signal map
	Relayer
	Relayer Registry

	Abstract Protocol
	Hash functions
	Pseudo random functions
	Commitments
	Signatures
	Identity commitment tree
	Nullifier map
	Signal map
	Semaphore state
	zkSNARK statement
	Groups, fields and zkSNARK proving system

	Concrete Protocol
	Constants
	Groups and fields
	Hash functions
	MiMC sponge
	Pedersen hash and commitments

	Nullifiers hash
	Signatures
	Semaphore state
	Implementation

	MicroMix - a Mixer
	Security claims
	Application layer
	Implementation

	OneOfUs - an anonymous survey/voting dApp
	Security claims
	Application layer
	Implementation

	Acknolwedgements

